Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 52(2): 651-661, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33443727

RESUMO

The petrochemical industry is responsible for many accidental releases of pollutants in soil such as hydrocarbons and toxic metals. This co-contamination is responsible for a delay in the degradation of the organic pollution. Many successful technologies to remove these metals apply extracellular polymeric substances (EPS). In this study, we tested the application of an EPS from a Paenibacillus sp. to aid the bioremediation of soils contaminated with crude oil and nickel. We conducted a microcosm experiment to soils containing combinations of oil, nickel, and EPS. The final concentration of oil was evaluated with an infrared spectrometer. Also, we sequenced the metagenomes of the samples in an ion torrent sequencer. The application of EPS did not aid the removal of hydrocarbons with or without the presence of nickel. However, it led to a smaller decrease in the diversity indexes. EPS decreased the abundance of Actinobacteria and increased that of Proteobacteria. The EPS also decreased the connectivity among Actinobacteria in the network analysis. The results indicated that the addition of EPS had a higher effect on the community structure than nickel. Altogether, our results indicate that this approach did not aid the bioremediation of hydrocarbons likely due to its effect in the community structure that affected hydrocarbonoclastic microorganisms.


Assuntos
Bactérias/metabolismo , Biopolímeros/química , Recuperação e Remediação Ambiental/métodos , Níquel/metabolismo , Paenibacillus/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Hidrocarbonetos/metabolismo , Paenibacillus/metabolismo , Petróleo/análise , Petróleo/microbiologia , Solo/química
2.
World J Microbiol Biotechnol ; 31(7): 1127-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25940327

RESUMO

Large petrochemical discharges are responsible for organic and inorganic pollutants in the environment. The purpose of this study was to evaluate the influence of nickel, one of the most abundant inorganic element in crude oil and the main component of hydrogen catalysts for oil refining, on the microbial community structure in artificially petroleum-contaminated microcosms and in solid phase bioreactor studies. In the presence of metals, the oil biodegradation in microcosms was significantly delayed during the first 7 days of operation. Also, increasing amounts of moisture generated a positive influence on the biodegradation processes. The oil concentration, exhibiting the most negative influence at the end of the treatment period. Molecular fingerprinting analyses (denaturing gradient gel electrophoresis--DGGE) indicated that the inclusion of nickel into the contaminated soil promoted direct changes to the microbial community structure. By the end of the experiments, the results of the total petroleum hydrocarbons removal in the bioreactor and the microcosm were similar, but reductions in the treatment times were observed with the bioreactor experiments. An analysis of the microbial community structure by DGGE using various markers showed distinct behaviors between two treatments containing high nickel concentrations. The main conclusion of this study was that Nickel promotes a significant delay in oil biodegradation, despite having only a minor effect over the microbial community.


Assuntos
Bactérias/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Níquel/efeitos adversos , Poluentes do Solo/efeitos adversos , Bactérias/classificação , Reatores Biológicos/microbiologia , Petróleo/metabolismo , Microbiologia do Solo
3.
Appl Microbiol Biotechnol ; 73(4): 949-59, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16896598

RESUMO

Sixteen spore forming Gram-positive bacteria were isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. These strains were identified as belonging to the genus Bacillus using classical biochemical techniques and API 50CH kits, and their identity was confirmed by sequencing of part of the 16S rRNA gene. All strains were tested for oil degradation ability in microplates using Arabian Light and Marlin oils and only seven strains showed positive results in both kinds of oils. They were also able to grow in the presence of carbazole, n-hexadecane and polyalphaolefin (PAO), but not in toluene, as the only carbon sources. The production of key enzymes involved with aromatic hydrocarbons biodegradation process by Bacillus strains (catechol 1,2-dioxygenase and catechol 2,3-dioxygenase) was verified spectrophotometrically by detection of cis,cis-muconic acid and 2-hydroxymuconic semialdehyde, and results indicated that the ortho ring cleavage pathway is preferential. Furthermore, polymerase chain reaction (PCR) products were obtained when the DNA of seven Bacillus strains were screened for the presence of catabolic genes encoding alkane monooxygenase, catechol 1,2-dioxygenase, and/or catechol 2,3-dioxygenase. This is the first study on Bacillus strains isolated from an oil reservoir in Brazil.


Assuntos
Bacillus/metabolismo , Sedimentos Geológicos/microbiologia , Petróleo/metabolismo , Alcanos/metabolismo , Oceano Atlântico , Bacillus/classificação , Bacillus/citologia , Bacillus/genética , Bacillus/isolamento & purificação , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Biodegradação Ambiental , Brasil , Carbazóis/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enzimas/análise , Enzimas/genética , Genes de RNAr , Dados de Sequência Molecular , Filogenia , Polienos/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...